Matrix solutions of a noncommutative KP equation and a noncommutative mKP equation
نویسندگان
چکیده
Matrix solutions of a noncommutative KP and a noncommutative mKP equation which can be expressed as quasideterminants are discussed. In particular, we investigate interaction properties of two-soliton solutions.
منابع مشابه
On a direct approach to quasideterminant solutions of a noncommutative modified KP equation
A noncommutative version of the modified KP equation and a family of its solutions expressed as quasideterminants are discussed. The origin of these solutions is explained by means of Darboux transformations and the solutions are verified directly. Furthermore, we present a noncommutative Miura transformation mapping solutions of the noncommutative mKP equation to solutions of the noncommutativ...
متن کاملOn a direct approach to quasideterminant solutions of a noncommutative KP equation
A noncommutative version of the KP equation and two families of its solutions expressed as quasideterminants are discussed. The origin of these solutions is explained by means of Darboux and binary Darboux transformations. Additionally, it is shown that these solutions may also be verified directly. This approach is reminiscent of the wronskian technique used for the Hirota bilinear form of the...
متن کاملStability of additive functional equation on discrete quantum semigroups
We construct a noncommutative analog of additive functional equations on discrete quantum semigroups and show that this noncommutative functional equation has Hyers-Ulam stability on amenable discrete quantum semigroups. The discrete quantum semigroups that we consider in this paper are in the sense of van Daele, and the amenability is in the sense of Bèdos-Murphy-Tuset. Our main result genera...
متن کاملOn solutions to the non-Abelian Hirota–Miwa equation and its continuum limits
In this paper, we construct Grammian-like quasideterminant solutions of a non-Abelian Hirota–Miwa equation. Through continuum limits of this non-Abelian Hirota–Miwa equation and its quasideterminant solutions, we construct a cascade of noncommutative differential-difference equations ending with the non-commutative KP equation. For each of these systems, the quasideterminant solutions are const...
متن کاملUltradiscrete sine-Gordon Equation over Symmetrized Max-Plus Algebra, and Noncommutative Discrete and Ultradiscrete sine-Gordon Equations
Ultradiscretization with negative values is a long-standing problem and several attempts have been made to solve it. Among others, we focus on the symmetrized max-plus algebra, with which we ultradiscretize the discrete sine-Gordon equation. Another ultradiscretization of the discrete sine-Gordon equation has already been proposed by previous studies, but the equation and the solutions obtained...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009